a. Fill in the midpoint of each class in the column provided. b. Enter the midpoints in L1 and the frequencies in L2, and use 1-VarStats to calculate the mean and standard deviation of the frequency distribution (see section 3.2 if needed). Using the frequency distribution, I found the mean height to be _______________ with a standard deviation of _______________.

Respuesta :

Answer:

[tex]\begin{array}{ccc}{Midpoint} & {Class} & {Frequency} & {64} & {63-65} & {1} & {67} & {66-68} & {11} & {70} & {69-71} & {8} &{73} & {72-74} & {7} & {76} & {75-77} & {3} & {79} & {78-80} & {1}\ \end{array}[/tex]

Using the frequency distribution, I found the mean height to be 70.2903 with a standard deviation of 3.5795

Step-by-step explanation:

Given

See attachment for class

Solving (a): Fill the midpoint of each class.

Midpoint (M) is calculated as:

[tex]M = \frac{1}{2}(Lower + Upper)[/tex]

Where

[tex]Lower \to[/tex] Lower class interval

[tex]Upper \to[/tex] Upper class interval

So, we have:

Class 63-65:

[tex]M = \frac{1}{2}(63 + 65) = 64[/tex]

Class 66 - 68:

[tex]M = \frac{1}{2}(66 + 68) = 67[/tex]

When the computation is completed, the frequency distribution will be:

[tex]\begin{array}{ccc}{Midpoint} & {Class} & {Frequency} & {64} & {63-65} & {1} & {67} & {66-68} & {11} & {70} & {69-71} & {8} &{73} & {72-74} & {7} & {76} & {75-77} & {3} & {79} & {78-80} & {1}\ \end{array}[/tex]

Solving (b): Mean and standard deviation using 1-VarStats

Using 1-VarStats, the solution is:

[tex]\bar x = 70.2903[/tex]

[tex]\sigma = 3.5795[/tex]

See attachment for result of 1-VarStats

Ver imagen MrRoyal
Ver imagen MrRoyal