Respuesta :

Answer:

c

Step-by-step explanation:

because x=9

Aan angle in quadrant I, the value of sin[tex]\theta[/tex] is [tex]\rm Sin \theta=\dfrac{\sqrt{14} }{5}[/tex].

What is the sin theta?

Sin theta is defined as the ratio of perpendicular and hypotenuse.

The given equation is;

[tex]\rm Cos\theta=\dfrac{\sqrt{11} }{5}[/tex]

The cos[tex]\theta[/tex] is given by;

[tex]\rm Cos\theta=\dfrac{Base}{hypotenuse}[/tex]

By applying Pythagoras theorem the value of base is;

[tex]\rm (5)^2=Perpendicular^2+ (\sqrt{11} )^2\\\\ Perpendicular^2= 25-11\\\\ Perpendicular^2=14\\\\ Perpendicular =\sqrt{14}[/tex]

The value of sin[tex]\theta[/tex] is;

[tex]\rm Sin \theta=\dfrac{Perpendicular}{Hypoteunse}\\\\Sin \theta=\dfrac{\sqrt{14} }{5}[/tex]

Hence, the value of sin[tex]\theta[/tex] is [tex]\rm Sin \theta=\dfrac{\sqrt{14} }{5}[/tex].

Learn more about trigonometry here;

https://brainly.com/question/26719838

#SPJ2