Respuesta :

Step-by-step explanation:

[tex] \cos \theta = \frac{1}{ \sec\theta } = - \frac{3}{ \sqrt{30} } = - \frac{3 \sqrt{30} }{30} = - \frac{ \sqrt{30} }{10} [/tex]

[tex] \cos( \frac{\pi}{2} - \theta )= \cos \frac{\pi}{2} \cos \theta + \sin \frac{\pi}{2} \sin \theta [/tex]

Note that

[tex] \sin( - \theta) = - \sin \theta[/tex]

[tex] \cos \frac{\pi}{2} = 0 \: \: \: \: \: \sin \frac{\pi}{2} = 1[/tex]

Therefore,

[tex] \cos( \frac{\pi}{2} - \theta ) = 0.97[/tex]