Answer:
Distance: [tex]\sqrt{13}[/tex] units
Step-by-step explanation:
The distance formula is [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] where:
We are given that:
To determine the value of our distance, [tex]d[/tex], we plug in our given information into the formula and solve for
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-6-(-8))^2+(7-10)^2}[/tex]
[tex]d=\sqrt{(-6+8)^2+(-3)^2}[/tex]
[tex]d=\sqrt{(2)^2+(-3)^2}[/tex]
[tex]d=\sqrt{4+9}[/tex]
[tex]d=\sqrt{13}[/tex]
Therefore, the distance between [tex](-8,10)[/tex] and [tex](-6,7)[/tex] is [tex]\sqrt{13}[/tex] units.
See the attached graph for a visual.