Select the correct answer. What is the approximate perimeter of trapezoid DEFG? Round your answer to the nearest hundredth. A. 12 units B. 12.04 units C. 12.48 units D. 13 units

Answer:
C. 12.48 units
Step-by-step explanation:
Perimeter of the trapezoid = DE + EF + FG + GD
DE = |-2 - 1| = 3 units
FG = |-3 - 2| = 5 units
Find EF and GD using distance formula
✔️Distance between E(1, 3) and F(2, 1):
[tex] EF = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Let,
(x1, y1) = (1, 3)
(x2, y2) = (2, 1)
Substitute
[tex] EF = \sqrt{(2 - 1)^2 + (1 - 3)^2} [/tex]
[tex] EF = \sqrt{(1)^2 + (-2)^2} [/tex]
[tex] EF = \sqrt{1 + 4} [/tex]
[tex] EF = \sqrt{5} [/tex]
[tex] EF = 2.24 units [/tex]
✔️Distance between G(-3, 1) and D(-2, 3):
[tex] GD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Let,
(x1, y1) = (-3, 1)
(x2, y2) = (-2, 3)
Substitute
[tex] GD = \sqrt{(-2 -(-3))^2 + (3 - 1)^2} [/tex]
[tex] GD = \sqrt{(-1)^2 + (2)^2} [/tex]
[tex] GD = \sqrt{1 + 4} [/tex]
[tex] GD = \sqrt{5} [/tex]
[tex] GD = 2.24 units [/tex]
✅Perimeter = 3 + 2.24 + 5 + 2.24 = 12.48 units