Respuesta :
Answer:
b. $0.02[tex]/in^3[/tex]
Step-by-step explanation:
Given
[tex]r =1in[/tex]
[tex]h = 10in[/tex]
[tex]Cost_{1pk} =\$3[/tex]
[tex]Cost_{2pk} =\$5[/tex]
Required
The difference in the price per [tex]in^3[/tex]
First, calculate the volume (V) of the cylinder
[tex]V = \pi r^2h[/tex]
[tex]V = 3.14 *1^2 * 10[/tex]
[tex]V = 31.4[/tex]
The unit cost of 1 pack is:
[tex]Unit_{1pk} = \frac{Cost_{1pk}}{V}[/tex]
[tex]Unit_{1pk} = \frac{\$3}{31.4in^3}[/tex]
The unit cost of 2 packs is:
[tex]Unit_{2pk} = \frac{Cost_{2pk}}{2*V}[/tex]
[tex]Unit_{2pk} = \frac{\$5}{2*31.4}[/tex]
[tex]Unit_{2pk} = \frac{\$5}{62.8in^3}[/tex]
The difference (d) is:
[tex]d = |Unit_{2pk} - Unit_{2pk}|[/tex]
[tex]d = \frac{\$3}{31.4in^3} - \frac{\$5}{62.8in^3}[/tex]
Take LCM
[tex]d = \frac{\$6 - \$5}{62.8in^3}[/tex]
[tex]d = \frac{\$1}{62.8in^3}[/tex]
[tex]d = \$0.0159/in^3[/tex]
Approximate
[tex]d = \$0.02/in^3[/tex]
Answer:
b)
Step-by-step explanation:
had it on my quiz also give other dude brainliest.