need this ASAP! Thank you!

Answer:
[tex]\displaystyle r = 6 \ cm[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Equality Properties
Geometry
Volume of a Cone Formula: [tex]\displaystyle V = \frac{\pi}{3}r^2h[/tex]
Step-by-step explanation:
Step 1: Define
Identify variables
V = 120π cm³
h = 10 cm
Step 2: Solve for r
Answer:
Radius of cone is 6 cm
Step-by-step explanation:
[tex]\sf\small\underline\purple{Given:-}[/tex]
[tex]\sf{\leadsto Volume\:_{(cone)}=120π \:cm^3}[/tex]
[tex]\sf{\leadsto \: Height\:_{(cone)}=10 cm}[/tex]
[tex]\sf\small\underline\purple{To\: Find:-}[/tex]
[tex]\sf{\leadsto Radius\:_{(cone)}=?}[/tex]
[tex]\sf\small\underline\purple{Solution:-}[/tex]
To calculate the radius of cone . Simply by applying formula of volume of cone. As given in the question that height is 10 cm and it's volume is 120 π cm³.
[tex]\sf\small\underline\purple{Calculation\: begin:-}[/tex]
[tex]\sf{\leadsto Volume\:_{(cone)}=\dfrac{1}{3}\pi\:r^2\:h}[/tex]
[tex] \small \sf \leadsto volume \: of \: cone \: = \frac{1}{3} \pi \times r {}^{2} h \\ [/tex]
[tex] \small \sf \leadsto \: 120 π cm³ \: = \frac{1}{3} \times\pi r {}^{2} \times 10cm \\[/tex]
[tex] \small \sf \leadsto \: 120 π cm³ \: = \frac{10 \: \pi\: cm}{3} \: r {}^{2}[/tex]
[tex] \small \sf \leadsto \frac{ 120\pi \: cm {}^{3} \times 3}{10\pi \: cm} \: = r {}^{2} \\ \\ [/tex]
[tex] \small \sf \leadsto \frac{360\pi cm {}^{3} }{10\pi \: cm} = \: r {}^{2} \\ [/tex]
[tex]\small \sf \leadsto 36 \:cm {}^{2} = r {}^{2} [/tex]
[tex]\small \sf \leadsto \sqrt{36 \: cm {}^{2} } = \sqrt{r {}^{2} } [/tex]
[tex]\small \sf \leadsto6cm = r[/tex]