Respuesta :

Answer: hi

Step-by-step explanation: siodrifjojseidufjsoidhfidshiufhoiersdnfiojdriofjoiedsjfpoiejdpoigheroiuhgoiutrhfbiukghvioruefdhgbiuktrhdfiougkhneoiuwhsrdtifu[tex]\lim_{n \to \infty} a_n \geq \alpha \leq \sqrt{x} \\ \pi \geq \lim_{n \to \infty} a_n \left \{ {{y=2} \atop {x=2}} \right. x^{2} \frac{x}{y} \frac{x}{y}[/tex]

Answer:

oh no

Step-by-step explanation:

⇔⇔∈∈ω∵↑↑±±±±±±±[tex]\lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \neq \neq \neq \neq \neq \neq \neq x^{2}[/tex]←⊂∈∈∈∈∈ωωωωωωωωωωωωωωωω∧∨∧∧∧∧