Respuesta :

Answer:

D

Step-by-step explanation:

We are given:

[tex]\displaystyle \sqrt{\sqrt[3]{2}}[/tex]

Recall the property:

[tex]\displaystyle \sqrt[b]{x}=x^{1/b}[/tex]

Hence:

[tex]\displaystyle \sqrt{\sqrt[3]{2}}=\sqrt{2^{1/3}}[/tex]

Using the same property:

[tex]\sqrt{2^{1/3}}=(2^{1/3})^{1/2}[/tex]

Recall the property:

[tex](x^a)^b=x^{ab}[/tex]

Hence, multiply:

[tex](2^{1/3})^{1/2}=2^{1/6}[/tex]

Therefore:

[tex]\displaystyle \sqrt{\sqrt[3]{2}}=2^{1/6}[/tex]

Our answer is D.

Answer:

The answer is [tex]2^{\frac{1}{6} }[/tex].

Step-by-step explanation:

To find which answer is equal to [tex]\sqrt{} \sqrt[3]{2}[/tex], start by simplifying [tex]\sqrt{} \sqrt[3]{2}[/tex]. The radical will simplify to [tex]\sqrt[6]{2}[/tex].

An easy way to determine which answer is correct, convert each of the numbers to decimal form.

For [tex]\sqrt[6]{2}[/tex], it will look like 1.122 in decimal form.

For [tex]2^{\frac{2}{3} }[/tex], it will look like 1.587 in decimal form.

For [tex]2^{\frac{3}{2} }[/tex], it will look like 2.828 in decimal form.

For [tex]2^{\frac{1}{3} }[/tex], it will look like 1.260 in decimal form.

For [tex]2^{\frac{1}{6} }[/tex], it will look like 1.122 in decimal form.

Then, by seeing which two decimal forms are the same, it causes the answer to be [tex]2^{\frac{1}{6} }[/tex].