what is the equation of the parabola with focus (-1/4,-2/3) and directrix y=3/4?
A. y = -x^2 +8x -7
B. y = -1/2x^2 +14/5x +17/53
C. y = -6/17x^2 - 3/17x +1/51
D. y = -1/6x^2

Respuesta :

Given:

Focus of the parabola = [tex]\left(-\dfrac{1}{4},-\dfrac{2}{3}\right)[/tex]

Directrix of the parabola is [tex]y=\dfrac{3}{4}[/tex].

To find:

The equation of the parabola.

Solution:

The equation of the parabola is:

[tex](x-h)^2=4p(y-k)[/tex]             ...(i)

Where, (h,k) is vertex, (h,k+p) is focus and [tex]y=k-p[/tex] is the directrix.

It is given that the focus of the parabola is at [tex][/tex].

[tex](h,k+p)=\left(-\dfrac{1}{4},-\dfrac{2}{3}\right)[/tex]

On comparing both sides, we get

[tex]h=-\dfrac{1}{4}[/tex]

[tex]k+p=-\dfrac{2}{3}[/tex]            ...(ii)

Directrix of the parabola is [tex]y=\dfrac{3}{4}[/tex]. So,

[tex]k-p=\dfrac{3}{4}[/tex]             ...(iii)

Adding (ii) and (iii), we get

[tex]2k=-\dfrac{2}{3}+\dfrac{3}{4}[/tex]

[tex]2k=\dfrac{-8+9}{12}[/tex]

[tex]k=\dfrac{1}{12\times 2}[/tex]

[tex]k=\dfrac{1}{24}[/tex]

Putting [tex]k=\dfrac{1}{24}[/tex] in (ii), we get

[tex]\dfrac{1}{24}+p=-\dfrac{2}{3}[/tex]

[tex]p=-\dfrac{2}{3}-\dfrac{1}{24}[/tex]

[tex]p=\dfrac{-16-1}{24}[/tex]

[tex]p=\dfrac{-17}{24}[/tex]

Putting [tex]h=-\dfrac{1}{4},k=\dfrac{1}{24}, p=-\dfrac{17}{24}[/tex] in (i), we get

[tex]\left(x-(-\dfrac{1}{4})\right)^2=4\left(-\dfrac{17}{24}\right)\left(y-\dfrac{1}{24}\right)[/tex]

[tex]\left(x+\dfrac{1}{4}\right)^2=-\dfrac{17}{6}\left(y-\dfrac{1}{24}\right)[/tex]

[tex]x^2+2(x)(\dfrac{1}{4})+(\dfrac{1}{4})^2=-\dfrac{17}{6}\left(y-\dfrac{1}{24}\right)[/tex]

[tex]-\dfrac{6}{17}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=y-\dfrac{1}{24}[/tex]

On further simplification, we get

[tex]-\dfrac{6}{17}(x^2)-\dfrac{6}{17}(\dfrac{1}{2}x)-\dfrac{6}{17}(\dfrac{1}{16})=y-\dfrac{1}{24}[/tex]

[tex]-\dfrac{6}{17}x^2-\dfrac{3}{17}x-\dfrac{3}{136}+\dfrac{1}{24}=y[/tex]

[tex]-\dfrac{6}{17}x^2-\dfrac{3}{17}x+\dfrac{-9+17}{408}=y[/tex]

[tex]-\dfrac{6}{17}x^2-\dfrac{3}{17}x+\dfrac{8}{408}=y[/tex]

[tex]-\dfrac{6}{17}x^2-\dfrac{3}{17}x+\dfrac{1}{51}=y[/tex]

Therefore, the equation of the parabola is [tex]y=-\dfrac{6}{17}x^2-\dfrac{3}{17}x+\dfrac{1}{51}[/tex]. Hence, the correct option is C.