Respuesta :

Given:

A figure of a triangle.

To find:

The measure of angle A.

Solution:

Label the points in the figure as shown below.

In the below figure,

[tex]\angle ACB\cong \angle DCE[/tex]            (Vertically opposite angles)

[tex]m\angle ACB=m\angle DCE[/tex]              (Congregant angles)

[tex]m\angle ACB=8x+4[/tex]

Using exterior angle theorem in triangle ABC, we get

[tex]m\angle A+m\angle C=\text{Exterior }m\angle B[/tex]

[tex]m\angle BAC+m\angle ACB=130^\circ[/tex]

[tex](3x-6)+(8x+4)=130^\circ[/tex]

[tex]11x-2=130^\circ[/tex]

Isolate the variable term x.

[tex]11x=130^\circ+2[/tex]

[tex]11x=132^\circ[/tex]

[tex]x=\dfrac{132^\circ}{11}[/tex]

[tex]x=12^\circ[/tex]

Now, the measure of angle A is:

[tex]m\angle A=3x-6[/tex]

[tex]m\angle A=3(12^\circ)-6[/tex]

[tex]m\angle A=36^\circ-6[/tex]

[tex]m\angle A=30^\circ[/tex]

Therefore, the correct option is B.

Ver imagen erinna