If f (2) is an exponential function where f(-2.5) = 9 and f(7) = 91, then find
the value of f(12), to the nearest hundredth.

Respuesta :

Answer:

[tex]f(12) = 323.02[/tex]

[tex]f(12) = 16.7 * 1.28^{12[/tex]

Step-by-step explanation:

Given

[tex]f(-2.5) = 9[/tex]

[tex]f(7) = 91[/tex]

[tex]f(12) = 16.7 * 1.28^{12[/tex]

Required

[tex]f(12)[/tex]

An exponential function is:

[tex]f(x) = ab^x[/tex]

[tex]f(-2.5) = 9[/tex] implies that:

[tex]9 = ab^{-2.5}[/tex]

[tex]f(7) = 91[/tex] implies that:

[tex]91 = ab^7[/tex]

Divide both equations

[tex]91/9 = ab^7/ab^{-2.5}[/tex]

[tex]91/9 = b^7/b^{-2.5}[/tex]

Apply law of indices

[tex]91/9 = b^{7+2.5}[/tex]

[tex]10.11 = b^{9.5}[/tex]

Take 9,5th root of both sides

[tex]b = 1.28[/tex]

So, we have:

[tex]9 = ab^{-2.5}[/tex]

[tex]9 = a * 1.28^{-2.5}[/tex]

[tex]9 = a * 0.54[/tex]

[tex]a = 9/0.54[/tex]

[tex]a = 16.7[/tex]

f(12) is calculated as:

[tex]f(x) = ab^x[/tex]

[tex]f(12) = 16.7 * 1.28^{12[/tex]

[tex]f(12) = 323.02[/tex]