Respuesta :

Given:

A figure of combination of hemisphere, cylinder and cone.

Radius of hemisphere, cylinder and cone = 6 units.

Height of cylinder = 12 units

Slant height of cone = 10 units.

To find:

The volume of the given figure.

Solution:

Volume of hemisphere is:

[tex]V_1=\dfrac{2}{3}\pi r^3[/tex]

Where, r is the radius of the hemisphere.

[tex]V_1=\dfrac{2}{3}(3.14)(6)^3[/tex]

[tex]V_1=\dfrac{6.28}{3}(216)[/tex]

[tex]V_1=452.16[/tex]

Volume of cylinder is:

[tex]V_2=\pi r^2h[/tex]

Where, r is the radius of the cylinder and h is the height of the cylinder.

[tex]V_2=(3.14)(6)^2(12)[/tex]

[tex]V_2=(3.14)(36)(12)[/tex]

[tex]V_2=1356.48[/tex]

We know that,

[tex]l^2=r^2+h^2[/tex]                               [Pythagoras theorem]

Where, l is length, r is the radius and h is the height of the cone.

[tex](10)^2=(6)^2+h^2[/tex]

[tex]100-36=h^2[/tex]

[tex]\sqrt{64}=h[/tex]

[tex]8=h[/tex]

Volume of cone is:

[tex]V_3=\dfrac{1}{3}\pi r^2h[/tex]

Where, r is the radius of the cone and h is the height of the cone.

[tex]V_3=\dfrac{1}{3}(3.14)(6)^2(8)[/tex]

[tex]V_3=\dfrac{25.12}{3}(36)[/tex]

[tex]V_3=301.44[/tex]

Now, the volume of the combined figure is:

[tex]V=V_1+V_2+V_3[/tex]

[tex]V=452.16+1356.48+301.44[/tex]

[tex]V=2110.08[/tex]

Therefore, the volume of the given figure is 2110.08 cubic units.