Respuesta :

Answer:

[tex]= \frac{-2(x-6)}{(x+4)(x-4)}[/tex]

Step-by-step explanation:

Given the expression;

[tex]\frac{x}{x^2-16} -\frac{3}{x-4}[/tex]

According to difference of two square;

x² - 16 = x²-4² = (x+4)(x-4)

Substitute;

[tex]\frac{x}{(x+4)(x-4)} - \frac{3}{x - 4}\\[/tex]

Find the LCM

[tex]= \frac{x-3(x+4)}{(x+4)(x-4)} \\= \frac{x-3x-12}{(x+4)(x-4)}\\= \frac{-2x-12}{(x+4)(x-4)}\\= \frac{-2(x-6)}{(x+4)(x-4)}[/tex]