A solid aluminum sphere of radius R has moment of
inertia I about an axis through its center. What is the
moment of inertia about a central axis of a solid
aluminum sphere of radius 2R?
1. 21
2. 41
3. 87
4. 161
5. 321​

Respuesta :

Answer:

5. 32I

Explanation:

The moment of inertia of a solid sphere about its central axis is given by

I = [tex]\frac{2}{5} MR^2[/tex]            ------------------(i)

Where;

M = mass of the sphere

R = radius of the sphere.

From the question;

Case 1: The aluminum sphere has a radius R and moment of inertia I.

This means that we can substitute these values of R and I into equation (i) and get;

I = [tex]\frac{2}{5} MR^2[/tex]       --------------(ii)

M is the mass of the aluminum sphere and is given by;

M = pV

Where;

p = density of aluminum

V = Volume of the sphere = [tex]\frac{4}{3} \pi R^3[/tex]

=> M = p([tex]\frac{4}{3} \pi R^3[/tex])              --------------------(*)

Case 2: An aluminum sphere with a radius of 2R instead.

Let the moment of inertia in this case be I' and mass be M'

Substituting R = 2R, M = M' and I = I' into equation (i) gives

I' = [tex]\frac{2}{5} M'(2R)^2[/tex]       ------------------(iii)

Where;

M' = pV'

p = density of aluminum

V' = volume of the sphere = [tex]\frac{4}{3} \pi (2R)^3[/tex]

=> M' = p([tex]\frac{4}{3} \pi (2R)^3[/tex])

Rewriting gives;

M' = p([tex]\frac{4}{3} \pi (2)^3(R)^3[/tex])

M' = p([tex]\frac{4}{3} \pi8(R)^3[/tex])

M' = 8p([tex]\frac{4}{3} \pi R^3[/tex])

From equation (*), this can be written as

M' = 8M

Now substitute all necessary values into equation (ii)

I' =  [tex]\frac{2}{5} M'(2R)^2[/tex]  

I' =  [tex]\frac{2}{5} (8M)(2R)^2[/tex]  

I' =  [tex]\frac{2}{5} (8M)(2)^2(R)^2[/tex]  

I' =  [tex]\frac{2}{5} (8M)(4)(R)^2[/tex]

I' =  [tex]\frac{2}{5} (32M)(R)^2[/tex]

I' =  [tex]32[\frac{2}{5}MR^2][/tex]

Comparing with equation (ii)

I' =  [tex]32[I][/tex]

Therefore, the moment of inertia about a central axis of a solid

aluminum sphere of radius 2R is 32I