The equation represents the total resistance, r, when two resistors
whose resistances are r1 and r2 are connected in parallel. Find the total
resistance when r1 is x and r2 is x + 1.

Respuesta :

Answer:

[tex]R = \frac{x(x+1)}{2x+1}[/tex] --- total resistance

Step-by-step explanation:

Given

[tex]\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}[/tex]

Required

Find R when

[tex]R_1 = x[/tex]

[tex]R_2 = x+1[/tex]

So, we have:

[tex]\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}[/tex]

Substitute values for both R's

[tex]\frac{1}{R} = \frac{1}{x} + \frac{1}{x+1}[/tex]

Take LCM

[tex]\frac{1}{R} = \frac{x+1+x}{x(x+1)}[/tex]

Collect like terms

[tex]\frac{1}{R} = \frac{x+x+1}{x(x+1)}[/tex]

[tex]\frac{1}{R} = \frac{2x+1}{x(x+1)}[/tex]

Inverse both sides

[tex]R = \frac{x(x+1)}{2x+1}[/tex]