Respuesta :

Answer:

[tex]17\sqrt{2}[/tex] ft

Step-by-step explanation:

take angle b as reference angle

using sin rule

sin 45 = opposite / hypotenuse

[tex]\frac{1}{\sqrt{2} }[/tex] = 17 / BC

BC =17 / [tex]\frac{1}{\sqrt{2} }[/tex]

BC = 17 * [tex]\sqrt{2}[/tex]

BC =  [tex]17\sqrt{2}[/tex] ft

Answer:

BC = 17[tex]\sqrt{2}[/tex] ft

Step-by-step explanation:

Using the sine ratio in the right triangle and the exact value

sin45° = [tex]\frac{1}{\sqrt{2} }[/tex] , then

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{BC}[/tex] = [tex]\frac{17}{BC}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )

BC = 17[tex]\sqrt{2}[/tex] ft