Find m∠EGF. please help!

Answer:
[tex] \large{ \tt{❃ \: EXPLANATION}} : [/tex]
[tex] \large{ \tt{❈ \: SOLUTION}} : [/tex]
[tex] \large{ \tt{{ ♡ \: \angle \: AGB + \angle \: BGC \: + \angle \: DGC = 180 \degree}}}[/tex] [ Sum of angle in a straight line ]
[tex] \large{ \tt{⟶ \: 30 \degree + m \angle \:BGC \: + \: 50 \degree = 180 \degree}}[/tex]
[tex] \large{ \tt{⟶ \: m \angle \: BGC + 80 \degree = 180 \degree}}[/tex]
[tex] \large{ \tt{⟶ \: m \angle \:BGC= 180 \degree - 80 \degree}}[/tex]
[tex] \large {\tt{⟶ \: m \angle \: BGC = 100 \degree}}[/tex]
[tex] \large{ \tt{❊ \: 2x = 100 \degree}}[/tex] [ being vertically opposite angles ]
[tex] \large{ \tt{⇢\frac{2x}{2} = \frac{100 \degree}{2} }}[/tex]
[tex] \large{ \tt{⇢ \: x = 50 \degree}}[/tex]
[tex] \large{ \tt{❁ \: REPLACING \: VALUE : }}[/tex]
[tex] \large{ \tt{ ➝ \: \angle \: EGF = 2x \degree = 2 \times 50 = \boxed{ \tt{100 \degree}}}}[/tex]
[tex] \boxed{ \boxed{ \large{ \tt{☄ \: OUR \: FINAL \: ANSWER : \boxed{ \underline{100 \degree}}}}}}[/tex]
[tex] \large{ \mathfrak{\# \: StayInAndExplore !\:☂ }}[/tex]
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Answer:
100°
Step-by-step explanation:
Since ∠AD are 180°, and each side is the same,
180°-30°-50°=100°