write y=2/3x+7 in standard form,

a) -2x+3y=21
b) -2x-3y=21
c) 3x-2y=21
d) -2x+3y=7

I've been trying to figure this out but for some reason my answers end up slightly off and I stg I'm doing this right. I'm kind of fed up with continually refreshing so I don't get a poor score, so I'd really appreciate the help.

Respuesta :

I hope this helps you




y=2/3x+7.3/3.1


y=2x+21/3


3y=2x+21


3y-2x=21
The answer is: [A]: -2x + 3y = 21 .
___________________
Note that "standard form" refers to:
_______________________________
→  Ax +By =C ;
      in which "x" and "y" are variables; "A" and "B" represent the coefficients before those variables, respectively; and "C" is a number (not a variable).
_______________________________
I shall demonstrate 2 (two) methods to convert the equation given:
________________________________________
→  y = (⅔) x + 7 ;   to "standard form".).
_____________________ 
Method 1:
_______________________
→ Given: y = (⅔)x + 7 ; 
______________________
→ Subtract "y" from EACH SIDE of the equation; and subtract "7" from EACH SIDE of the equation. Doing so: 1) puts the "x" and "y' values on one side of the equation; 2) removes a numeric value from the side of the equation with the "x" and "y" values; and 3) puts a numeric value on a side of the equation that does not have any "x" or "y" values — all three of which help to convert to equation to "standard form"—that is, " Ax + By = C " ;
____________
→ y = (⅔)x + 7 ;  → y − y − 7 = (⅔)x + 7 − y − 7 ; To get:
____________
→  -7 = (⅔)x − y  ↔ Rewrite as: (⅔)x − y = -7 ;
________________________
Note:  While this very would could be an answer in"standard form"; 
 "Ax + By = C", in which A = ⅔ , B = -1; and C = -7; 
                     (Note: There is an implied "1" before the "y", since  "1*y = y; 
                                    since: y*1 = y; (anything * 1 = said number); 
                                     and the coefficient is "-1" (NEGATIVE 1); since the                                               "standard form" is: "Ax + By = C; and we have: 

                                                                             (⅔)x − y = -7 ; so the:
"− y" functions as a: PLUS "negative 1y"; in this circumstance.
_________________________________________________
However, this equation—as written—does NOT match any of the answer choices given.
___________________
→So, now we should multiply our ENTIRE equation (BOTH SIDES) by "-3"; for the sake of:  
___________________
1) getting an answer choice that matches one of the answer choices given;
AND: 
2) for the general sake of simplicity—which would include getting the "-7" changed to a "positive 21" ;
_______________________.
 → {Note: A non-zero, negative integer, when multiplied by another non-zero, negative integer; will result in a non-zero POSITIVE integer.
 As such: -7 *-3 = 21}.
_________________
We have:  (⅔)x − y = -7 ; We shall multiply EACH SIDE of the equation by "-3";     → -3 * {(⅔)x − y = -7} ;
______________________
→  Note: Start with:
   →"(-3 * (⅔)x =  -3 * ⅔ * x ;
   →   -3 * ⅔  = [tex] \frac{-3}{1} [/tex] * [tex] \frac{2}{3} [/tex]  =(-3*2)/(1*3)
= -6 / 3 = -2 ;  → Don't forget to bring down the "x":  -2 * x = -2x ; 
→ So: - 3 *(⅔)x = - 2x ;
_________________
The next term: -3 *-1y = +3y ; (Note: -3 *-1y = (-3* -1)*y = 3*y = +3y ;
____________________
The next term: -3*(-7) = +21 ;
_______________________________________
→ to get:  → -2x + 3y = 21 ; which is: 'Answer choice: [A]'.
___________________________________________________________
Method 2:
____________
Given: y = (⅔)x + 7 ; write in standard form:
_________________________
 →  Given:    y = (⅔)x + 7 ; Multiply EACH SIDE of the equation by "3", to get rid of the fraction, "(⅔)" ; 
___________________________
 → 3* { y = (⅔)x + 7 } ;  to get:
____________________________
First term: 3*y  = 3y;  

Second term: 3*((⅔)x)) = 3 * (⅔) * x ;  3 * (⅔) = (3/1)*(2/3) =(3*2)/(1*3) =
6/3 = 2; → Don't forget the "x" → 2 * x
    = 2x;
___________________
Third term: 3*7 = 21;
__________________
→To get: → 3y = 2x + 21 ; 
____________________________
 → Now, subtract "3y" and subtract "21" from EACH SIDE of the equation:
____________________________
→ 3y = 2x + 21 ;   →  3y − 21 − 3y = 2x + 21 − 3y − 21 ;
_____________________________________________
to get: →  -21 = 2x − 3y ; → Rewrite as: → 2x − 3y = -21 ;

______________________________
Note:  This would appear in "standard form" equation; "Ax + By = C"; 
                       in which A = 2; B = 3; C = -21;
___________________________________________
However,  " 2x − 3y = -21 " ;  is NOT an answer choice given.
______________________________
However, there are answer choices given with "21" {note: "positive 21"} representing the number for "C" within the "standard form" equation: 
________
→ "Ax + By = C"
_________________
 So, given our equation:
________________________
→ 2x − 3y = -21 ;
          → We can multiply the ENTIRE equation (BOTH sides) by "-1" ; to                 change the "-21" value to "21" (positive 21); and see if the equation matches any of the answer choices:
______________
→  -1 * {2x − 3y = -21} ; 
______________
First term:  -1* 2x = -2x ; 

Second term: -1 * -3y = -1 * -3 * y = +3y ; 

Third term: -1 * -21 = + 21
___________________________
→  -2x + 3y = 21 ; which is:   'Answer choice: [A]'.