Respuesta :

Space

Answer:

[D] [tex]\displaystyle \lim_{h \to 0} \frac{[5(x + h)^2 - 2(x + h)] - (5x^2 - 2x)}{h}[/tex]

General Formulas and Concepts:

Calculus

Limits

Derivatives

Definition of a Derivative: [tex]\displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(x) = 5x^2 - 2x[/tex]

Step 2: Differentiate

  1. Substitute in function [Definition of a Derivative]:                                          [tex]\displaystyle f'(x)= \lim_{h \to 0} \frac{[5(x + h)^2 - 2(x + h)] - (5x^2 - 2x)}{h}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e