Respuesta :

Space

Answer:

[C] 0

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Algebra I

  • Terms/Coefficients
  • Functions
  • Function Notation

Calculus

Limits

Derivatives

Definition of a Derivative: [tex]\displaystyle f'(x)= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle\displaystyle g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]

[tex]\displaystyle f(x) = \frac{3}{5x^4 + 3}[/tex]

[tex]\displaystyle g(0)[/tex]

Step 2: Differentiate

  1. Substitute in x [Function g(x)]:                                                                         [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}[/tex]
  2. Substitute in function f(x) [Function g(x)]:                                                        [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{\frac{3}{5(0 + h)^4 + 3} - \frac{3}{5(0)^4 + 3}}{h}[/tex]
  3. Simplify:                                                                                                             [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{\frac{3}{5h^4 + 3} - 1}{h}[/tex]
  4. Rewrite:                                                                                                             [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{3}{h(5h^4 + 3)} - \frac{1}{h}[/tex]
  5. Rewrite:                                                                                                             [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{3}{h(5h^4 + 3)} - \frac{5h^4 + 3}{h(5h^4 + 3)}[/tex]
  6. [Subtraction] Combine like terms:                                                                   [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{3 - 5h^4 + 3}{h(5h^4 + 3)}[/tex]
  7. [Addition] Simplify:                                                                                            [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{-5h^4 + 6}{h(5h^4 + 3)}[/tex]
  8. [Distributive Property] Distribute h:                                                                 [tex]\displaystyle\displaystyle g(0) = \lim_{h \to 0} \frac{-5h^4 + 6}{5h^5 + 3h}[/tex]
  9. Evaluate limit [Power Method]:                                                                        [tex]\displaystyle\displaystyle g(0) = 0[/tex]

Since the bottom polynomial has a higher degree than the top polynomial, the bottom polynomial will increase faster.

∴ If the bottom is approaching a bigger value, the fraction gets smaller and smaller, approaching 0.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e