In circle F with m \angle EFG= 122m∠EFG=122 and EF=16EF=16 units, find the length of arc EG. Round to the nearest hundredth.

Respuesta :

Given:

In circle F, [tex]m\angle EFG=122^\circ,\ EF=16[/tex] units.

To find:

The length of arc EG.

Solution:

It is given that, [tex]m\angle EFG=122^\circ,\ EF=16[/tex] units. It means the central angle of arc EG is 122 degrees and the radius of the circle F is 16 units.

Formula for arc length is:

[tex]s=2\pi r\times \dfrac{\theta}{360^\circ }[/tex]

Where, r is the radius and [tex]\theta [/tex] is the central angle in degrees.

Putting [tex]r=16,\ \theta=122^\circ,\ \pi=3.14[/tex], we get

[tex]s=2(3.14)(16)\times \dfrac{122^\circ}{360^\circ }[/tex]

[tex]s=100.48\times \dfrac{61}{180}[/tex]

[tex]s=34.0515556[/tex]

[tex]s\approx 34.05[/tex]

Therefore, the length of arc EG is 34.05 units.