What's the answer? Also please tell the steps of the solution.

Answer:
[tex] \rm\displaystyle D) \left (1,3\right)[/tex]
Step-by-step explanation:
well to figure out the point we can consider the following formula:
[tex] \rm\displaystyle \text C(x,y)= \left (\frac{m x_{2} + n x_{1} }{m + n} , \frac{m y_{2} + n y_{1} }{m + n} \right)[/tex]
from the given we acquire that,
therefore substitute:
[tex] \rm\displaystyle \text C(x,y)= \left (\frac{(2) (4)+ 3( - 1) }{2 + 3} , \frac{(2) ( - 3) + (3)(7)}{2 + 3} \right)[/tex]
simplify multiplication:
[tex] \rm\displaystyle \text C(x,y)= \left (\frac{8 - 3 }{2 + 3} , \frac{ - 6+ 21}{2 + 3} \right)[/tex]
simplify:
[tex] \rm\displaystyle \text C(x,y)= \left (\frac{5}{5} , \frac{ 15}{5} \right)[/tex]
simplify division:
[tex] \rm\displaystyle \text C(x,y)= \left (1,3\right)[/tex]
hence our answer is D)
[tex] \huge\boxed{\mathfrak{Answer}}[/tex]
Points => (-1, 7) & (4, -3)
Ratio => 2 : 3
(x₁, y₁) = (-1, 7)
(x₂, y₂) = (4, -3)
(m₁, m₂) = (2, 3)
Formula = [tex]\large\left (\frac{m_{1} x_{2} + m_{2} x_{1} }{m_{1} + m_{2}} , \frac{m_{1} y_{2} + m_{2} y_{1} }{m_{1} + m_{2}} \right)[/tex]
Points which divide the line segment
= [tex]( \frac{2 \times 4 + 3 \times - 1}{2 + 3}, \frac{2 \times -3 + 3 \times 7}{2 + 3})[/tex]
[tex] =( \frac{8 - 3}{5} , \frac{ - 6 + 21}{5}) \\ = ( \frac{5}{5} , \frac{15}{5} ) \\ = (1,3)[/tex]
Answer => (1, 3) [option D]