Respuesta :

Answer:

The sum is 2275

Step-by-step explanation:

Given

[tex]75,76,77....99,100[/tex]

Required

The sum

Using arithmetic progression, we have:

[tex]S_n = \frac{n}{2}(T_1 + T_n)[/tex]

Where:

[tex]T_1 = 75[/tex] --- first term

[tex]T_n = 100[/tex] --- last term

[tex]n = T_n - T_1 + 1[/tex]

[tex]n = 100 - 75 + 1 = 26[/tex]

So, we have:

[tex]S_n = \frac{n}{2}(T_1 + T_n)[/tex]

[tex]S_n = \frac{26}{2}*(75 + 100)[/tex]

[tex]S_n = 13*175[/tex]

[tex]S_n = 2275[/tex]