Answer:
The correct response is "0.0129".
Step-by-step explanation:
Given:
[tex]n=1500[/tex]
[tex]p=0.47[/tex]
[tex]np=1500\times 0.47[/tex]
[tex]=705[/tex]
[tex]nq=1500\times (1-0.47)[/tex]
[tex]=795[/tex]
Mean of sampling distribution will be:
[tex]\mu_\hat{p}[/tex] = [tex]0.47[/tex]
hence,
The standard deviation will be:
⇒ [tex]\sigma_\hat{p}[/tex] = [tex]\sqrt{\frac{p(1-p)}{n} }[/tex]
By putting the values, we get
= [tex]\sqrt{\frac{0.47(1-0.47)}{1500} }[/tex]
= [tex]0.012886686[/tex]
= [tex]0.0129[/tex]