Respuesta :
Step-by-step explanation:
If
[tex]V=\dfrac{4\pi}{3}r^3[/tex]
then we can solve for r as
[tex]r = \sqrt[3]{\dfrac{3V}{4\pi}}[/tex]
If the volume of the sphere is 150 ft^3, then the radius is
[tex]r = \sqrt[3]{\dfrac{3(150\:\text{ft}^3)}{4\pi}} = 3.30\:\text{ft}[/tex]
The radius of the given sphere with a volume of 150 cubic feet is 2.29 feet, correct to two decimal places.
Given that
the volume of a sphere = 150 cubic feet.
the radius of the sphere=????
what is a Sphere?
a round solid figure, or its surface, with every point on its surface equidistant from its center.
as we know,
the volume of a sphere
[tex]V=\frac{4}{3} *\pi *r^3[/tex]
[tex]r = \sqrt[3]{\frac{3V}{4\pi } }[/tex][tex]r = \sqrt[3]{\frac{3*150}{4\pi } }[/tex][tex]=2.29 feet[/tex]
therefore, the radius of the given sphere is 2.29feet
to get more about sphere refer to the link,
https://brainly.com/question/22807400