Answer:
(a) 74553
(b) 172120
(c) 234802
Step-by-step explanation:
Given
[tex]y = \frac{340110}{1 + 377e^{-0.259t}}[/tex]
Solving (a): 1998
Year 1998 means that:
[tex]t =1998 - 1980[/tex]
[tex]t =18[/tex]
So, we have:
[tex]y = \frac{340110}{1 + 377e^{-0.259*18}}[/tex]
[tex]y = \frac{340110}{1 + 377e^{-4.662}}[/tex]
[tex]y = \frac{340110}{1 + 3.562}[/tex]
[tex]y = \frac{340110}{4.562}[/tex]
[tex]y = 74553[/tex] --- approximated
Solving (b): 2003
Year 2003 means that:
[tex]t = 2003 - 1980[/tex]
[tex]t =23[/tex]
So, we have:
[tex]y = \frac{340110}{1 + 377e^{-0.259*23}}[/tex]
[tex]y = \frac{340110}{1 + 377e^{-5.957}}[/tex]
[tex]y = \frac{340110}{1 + 0.976}[/tex]
[tex]y = \frac{340110}{1.976}[/tex]
[tex]y = 172120[/tex] --- approximated
Solving (c): 2006
Year 2006 means that:
[tex]t = 2006 - 1980[/tex]
[tex]t =26[/tex]
So, we have:
[tex]y = \frac{340110}{1 + 377e^{-0.259*26}}[/tex]
[tex]y = \frac{340110}{1 + 377e^{-6.734}}[/tex]
[tex]y = \frac{340110}{1 + 0.4485}[/tex]
[tex]y = \frac{340110}{1.4485}[/tex]
[tex]y = 234802[/tex] --- approximated