Let a and b be the solutions to x^2 + x − 3 = 0. Find the value of a^3 − 4b^2 + 19.
If you can't solve it don't answer.
This is a challenge.
Good luck!

Respuesta :

Answer:

0.037

Step-by-step explanation:

Given that,

Let a and b be the solutions to [tex]x^2 + x -3 = 0[/tex]

It can be solved using quadratic formula where a = 1, b = 1 and c = -3

So,

[tex]x=\dfrac{-1+\sqrt{1^2-4\times 1\times (-3)}}{2(1)},\dfrac{-1-\sqrt{1^2-4\times 1\times (-3)}}{2(1)}\\\\x=1.30,-2.3[/tex]

Let a = 1.3, b = -2.3

The value of [tex]a^3 -4b^2 + 19[/tex] can be given by :

[tex]a^3 -4b^2 + 19=(1.3)^3-4\times (-2.3)^2+19\\\\=0.037[/tex]

So, the value of the given expression is 0.037.