Respuesta :

Answer:

4/3

Step-by-step explanation:

In slope-intercept form [tex]y=mx+b[/tex], [tex]m[/tex] represents the slope of the line.

Let's write [tex]3x+4y=-2[/tex] in slope-intercept form by isolating [tex]y[/tex]:

[tex]3x+4y=-2,\\4y=-3x-2,\\y=-\frac{3}{4}x-\frac{1}{2}[/tex]

Therefore, the slope of this line is [tex]\frac{-3}{4}[/tex]. To find the slope of a line perpendicular to it, multiply the reciprocal of the slope by -1 (take the negative reciprocal).

Therefore, the slope of a line perpendicular to [tex]3x+4y=-2[/tex] is:

[tex]m_{perp}=-(-\frac{4}{3})=\boxed{\frac{4}{3}}[/tex]

Answer:

4/3

Given equation :-

  • 3x + 4y = -2
  • 4y = -3x - 2
  • y = (-3x - 2)/4
  • y = -3/4 x - 1/2

Slope :-

  • m = -3/4

Slope of perpendicular line :-

  • m' = -(1/m )
  • m' = -( 1 ÷ -3/4 )
  • m' = -1 * -4/3
  • m = 4/3