The percentage rate of change of the given functions is given by the
derivative of their natural logarithm.
Responses:
[tex]f(t) = 1.18^t[/tex]
- 16.6%, exponential growth
[tex]g(t) = 2^{-2 \cdot t}[/tex]
- -138.6%, exponential decay
[tex]h(t) = 1.19^{\frac{t}{10} }[/tex]
[tex]k(t) = 0.13^t[/tex]
Which method is used to determine the percentage rate of change?
The percentage rate of change can be presented as follows;
[tex]Percentage \ rate \ of \ change = \mathbf{100 \times \dfrac{d}{dt} ln \left(f(t)\right)}[/tex]
[tex]f(t) = \mathbf{ 1.18^t} \ gives;[/tex]
- [tex]100 \times \dfrac{d}{dt} \left( ln \left(1.18^t\right) \right) = \mathbf{ 100 \times ln(1.18)} \approx \underline{16.6\%}[/tex], exponential growth
[tex]g(t) = \mathbf{2^{-2 \cdot t} }\ gives;[/tex]
[tex]100 \times \dfrac{d}{dt} \left( ln \left(2^{-2 \cdot t}\right) \right) = \mathbf{ 100 \times -2 \times ln(2)} \approx \underline{ -138.6 \%}[/tex] , exponential decay
[tex]h(t) = \mathbf{1.19^{\frac{t}{10} } }\ gives;[/tex]
[tex]100 \times \dfrac{d}{dt} \left( ln \left(1.19^{\frac{t}{10} }\right) \right) = \mathbf{ 100 \times \dfrac{10 \cdot ln(1.19)}{100}} \approx 1.7 \%[/tex], exponential growth
[tex]k(t) = \mathbf{ 0.13^t} \ gives;[/tex]
[tex]100 \times \dfrac{d}{dt} \left( ln \left(0.13^t }\right) \right) = \mathbf{100 \times ln(0.13)}\approx -204 \%[/tex], exponential decay
Learn more about exponential functions here:
https://brainly.com/question/14325265