Respuesta :

Answer:

[tex]m = 12[/tex]

[tex]n =3[/tex]

Step-by-step explanation:

Given

[tex]P(x) = x^3 + mx^2 - nx - 10[/tex]

Required

The values of m and n

For x - 1;

we have:

[tex]x - 1 = 0[/tex]

[tex]x=1[/tex]

So:

[tex]P(1) = (1)^3 + m*(1)^2 - n*(1) - 10[/tex]

[tex]P(1) = 1 + m*1 - n*1 - 10[/tex]

[tex]P(1) = 1 + m - n - 10[/tex]

Collect like terms

[tex]P(1) = m - n + 1 - 10[/tex]

[tex]P(1) = m - n -9[/tex]

Because x - 1 divides the polynomial, then P(1) = 0;

So, we have:

[tex]m - n -9 = 0[/tex]

Add 9 to both sides

[tex]m - n = 9[/tex] --- (1)

For x + 2;

we have:

[tex]x + 2 = 0[/tex]

[tex]x = -2[/tex]

So:

[tex]P(-2) = (-2)^3 + m*(-2)^2 - n*(-2) - 10[/tex]

[tex]P(-2) = -8 + 4m + 2n - 10[/tex]

Collect like terms

[tex]P(-2) = 4m + 2n - 10 - 8[/tex]

[tex]P(-2) = 4m + 2n - 18[/tex]

x + 2 leaves a remainder of 36, means that P(-2) = 36;

So, we have:

[tex]4m + 2n - 18 = 36[/tex]

Collect like terms

[tex]4m + 2n = 36+18[/tex]

[tex]4m + 2n = 54[/tex]

Divide through by 2

[tex]2m + n=27[/tex] --- (2)

Add (1) and (2)

[tex]m + 2m - n + n = 9 +27[/tex]

[tex]3m =36[/tex]

Divide by 3

[tex]m = 12[/tex]

Substitute [tex]m = 12[/tex] in (1)

[tex]m - n =9[/tex]

Make n the subject

[tex]n = m - 9[/tex]

[tex]n = 12 - 9[/tex]

[tex]n =3[/tex]