Respuesta :

Answer:

The answer is:

[tex]f(x)=2x^{2}-8x+6[/tex]

Step-by-step explanation:

The equation of a parabola in the intercept form is given by:

[tex]y=a(x-p)(x-q)[/tex]

Where:

p and q are x-intercepts

Now, we know the parabola intercepts at x=1 and x=3.

So we will have:

[tex]y=a(x-1)(x-3)[/tex]

Using the point (-1,16) we could find the value of a.

[tex]16=a(-1-1)(-1-3)[/tex]

[tex]16=a(-2)(-4)[/tex]

[tex]16=8a[/tex]

[tex]a=2[/tex]

Therefore, the equation is:

[tex]y=2(x-1)(x-3)[/tex]

[tex]y=2(x^{2}-4x+3)[/tex]

[tex]y=2x^{2}-8x+6[/tex]

The answer is:

[tex]f(x)=2x^{2}-8x+6[/tex]

I hope it helps you!