Respuesta :

Answer:

Step-by-step explanation:

Given function is,

[tex]r(x)=\frac{3x^3-7}{x^2-6x+9}[/tex]

For x = 0, substitute the value of x in the given function.

[tex]r(0)=\frac{3(0)^3-7}{(0)^2-6(0)+9}[/tex]

[tex]r(0)=\frac{-7}{9}[/tex]

For r = 3,

[tex]r(3)=\frac{3(3)^3-7}{(3)^2-6(3)+9}[/tex]

[tex]r(3)=\frac{81-7}{9-18+9}[/tex]

      [tex]=\frac{74}{(9-18+9)}[/tex]

      [tex]=\frac{74}{0}[/tex]

Function is undefined at x = 3.

For x = -3,

[tex]r(-3)=\frac{3(-3)^3-7}{(-3)^2-6(-3)+9}[/tex]

         [tex]=\frac{-81-7}{9+18+9}[/tex]

         [tex]=\frac{-88}{36}[/tex]

         [tex]=-\frac{22}{9}[/tex]