Respuesta :
Answer:
[tex]\mathbf{F_1=4.41*10^4\ N}[/tex]
[tex]\mathbf{F_2 = 1.176*10^5 \ N}[/tex]
Explanation:
The missing image of the figure slide is attached in below.
However, from the model, it is obvious that it is in equilibrium.
As a result, the relation of the force and the torque is said to be zero.
i.e.
[tex]\sum F = 0[/tex] and [tex]\sum \tau = 0[/tex]
From the image, expressing the forces through the y-axis, we have:
[tex]F_1+F_2 = W_B + W_P \\ \\ \implies 9.8(1500+15000) \\ \\ \implies \mathtt{1.617\times 10^5 \ N}[/tex]
Also, let the force [tex]F_1[/tex] be the pivot and computing the torque to determine [tex]F_2[/tex]:
Then:
[tex]F_1(0)+F_2(20.0) = 10.0W_B + 15.0W_P[/tex]
[tex]F_2 = \dfrac{((10*1500)+(15*15000))*9.8}{20.0}[/tex]
[tex]F_2 = 117600 \ N[/tex]
[tex]\mathbf{F_2 = 1.176*10^5 \ N}[/tex]
For the force equation:
[tex]F_1+F_2=1.617*10^5 \ N;[/tex]
where:
[tex]F_2 = 1.176*10^5 \ N[/tex]
Then:
[tex]F_1+1.176*10^5 \ N=1.617*10^5 \ N[/tex]
[tex]F_1=1.617*10^5 \ N-1.176*10^5 \ N[/tex]
[tex]F_1=44100\ N[/tex]
[tex]\mathbf{F_1=4.41*10^4\ N}[/tex]
