Respuesta :

Answer:

C. 15.6

Step-by-step explanation:

Perimeter of WXYZ = WX + XY + YZ + ZW

Use the distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] to calculate the length of each segment.

✔️Distance between W(-1, 1) and X(1, 2):

Let,

[tex] W(-1, 1) = (x_1, y_1) [/tex]

[tex] X(1, 2) = (x_2, y_2) [/tex]

Plug in the values

[tex] WX = \sqrt{(1 - (-1))^2 + (2 - 1)^2} [/tex]

[tex] WX = \sqrt{(2)^2 + (1)^2} [/tex]

[tex] WX = \sqrt{4 + 1} [/tex]

[tex] WX = \sqrt{5} [/tex]

[tex] WX = 2.24 [/tex]

✔️Distance between X(1, 2) and Y(2, -4)

Let,

[tex] X(1, 2) = (x_1, y_1) [/tex]

[tex] Y(2, -4) = (x_2, y_2) [/tex]

Plug in the values

[tex] XY = \sqrt{(2 - 1)^2 + (-4 - 2)^2} [/tex]

[tex] XY = \sqrt{(1)^2 + (-6)^2} [/tex]

[tex] XY = \sqrt{1 + 36} [/tex]

[tex] XY = \sqrt{37} [/tex]

[tex] XY = 6.08 [/tex]

✔️Distance between Y(2, -4) and Z(-2, -1)

Let,

[tex] Y(2, -4) = (x_1, y_1) [/tex]

[tex] Z(-2, -1) = (x_2, y_2) [/tex]

Plug in the values

[tex] YZ = \sqrt{(-2 - 2)^2 + (-1 -(-4))^2} [/tex]

[tex] YZ = \sqrt{(-4)^2 + (3)^2} [/tex]

[tex] YZ = \sqrt{16 + 9} [/tex]

[tex] YZ = \sqrt{25} [/tex]

[tex] YZ = 5 [/tex]

✔️Distance between Z(-2, -1) and W(-1, 1)

Let,

[tex] Z(-2, -1) = (x_1, y_1) [/tex]

[tex] W(-1, 1) = (x_2, y_2) [/tex]

Plug in the values

[tex] ZW = \sqrt{(-1 -(-2))^2 + (1 - (-1))^2} [/tex]

[tex] ZW = \sqrt{(1)^2 + (2)^2} [/tex]

[tex] ZW = \sqrt{1 + 4} [/tex]

[tex] ZW = \sqrt{5} [/tex]

[tex] ZW = 2.24 [/tex]

✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56

≈ 15.6

Answer:CCCCCCCCCCCCCCCCC

Step-by-step explanation: