Respuesta :
Answer:
Step-by-step explanation:
Total number of balls = 3 + 2 = 5
1)
a)
[tex]Probability \ of \ taking \ 2 \ black \ ball \ with \ replacement\\\\ = \frac{3C_1}{5C_1} \times \frac{3C_1}{5C_1} =\frac{3}{5} \times \frac{3}{5} = \frac{9}{25}\\\\[/tex]
b)
[tex]Probability \ of \ one \ black \ and \ one\ white \ with \ replacement \\\\= \frac{3C_1}{5C_1} \times \frac{2C_1}{5C_1} = \frac{3}{5} \times \frac{2}{5} = \frac{6}{25}[/tex]
c)
Probability of at least one black( means BB or BW or WB)
[tex]=\frac{3}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{5} \\\\= \frac{9}{25} + \frac{6}{25} + \frac{6}{25}\\\\= \frac{21}{25}[/tex]
d)
Probability of at most one black ( means WW or WB or BW)
[tex]=\frac{2}{5} \times \frac{2}{5} + \frac{3}{5} \times \frac{2}{5} \times \frac{2}{5} + \frac{3}{5}\\\\= \frac{4}{25} + \frac{6}{25} + \frac{6}{25}\\\\=\frac{16}{25}[/tex]
2)
a) Probability both black without replacement
[tex]=\frac{3}{5} \times \frac{2}{4}\\\\=\frac{6}{20}\\\\=\frac{3}{10}[/tex]
b) Probability of one black and one white
[tex]=\frac{3}{5} \times \frac{2}{4}\\\\=\frac{6}{20}\\\\=\frac{3}{10}[/tex]
c) Probability of at least one black ( BB or BW or WB)
[tex]=\frac{3}{5} \times \frac{2}{4} + \frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{3}{4}\\\\=\frac{6}{20} + \frac{6}{20} + \frac{6}{20} \\\\=\frac{18}{20} \\\\=\frac{9}{10}[/tex]
d) Probability of at most one black ( BW or WW or WB)
[tex]=\frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4} + \frac{2}{5} \times \frac{3}{4}\\\\=\frac{6}{20} + \frac{2}{20} + \frac{6}{20} \\\\=\frac{14}{20}\\\\=\frac{7}{10}[/tex]