The system is initially moving with the cable taut, the 15-kg block moving down the rough incline with a speed of 0.080 m/s, and the spring stretched 39 mm. By the method of this article, (a) determine the velocity v of the block after it has traveled 99 mm, and (b) calculate the distance d traveled by the block before it comes to rest.

Respuesta :

Solution :

The spring is expanded by 2 times of the block when it moves down an inclined by x times.

Here, [tex]$x_1$[/tex] = 39 mm

        [tex]x_2[/tex] = 225 mm

a). From the work energy principal,

   Work forces = kinetic energy

[tex]$(mg \sin 50^\circ)\times \frac{99}{1000}-(\mu_k mg \cos 50^\circ) \times \frac{99}{1000} -\frac{1}{2}k(0.225^2 - 0.039^2)=\frac{1}{2}m(V^2_2-0.08^2)$[/tex]

[tex]$(112.6 \times 0.099)-(14.17 \times 0.099)-4.91= 7.5(V^2_2-0.08^2)$[/tex]

[tex]$9.75= 7.5(V^2_2-0.08^2)$[/tex]

[tex]$1.3= V^2_2-0.08^2$[/tex]

[tex]$V_2=1.14\ m/s$[/tex]

b). calculating the distance travelled by the block before it comes to rest.

Substitute the value of [tex]V_2[/tex] in (1),

[tex]$-(\mu_kmg \cos 50^\circ)x + (mg \sin 50^\circ)x-\frac{1}{2}k\left( ( 2x+0.039)^2 - 0.039^2\right)= -\frac{1}{2}m(0.08)^2$[/tex]

[tex]$-14.17x+112.6x - 100(4x^2+0.156x)=-0.048$[/tex]

[tex]$98.43x - 100(4x^2+0.156x)+0.048=0$[/tex]

[tex]$98.43x - 400x^2-15.6x+0.048=0$[/tex]

[tex]$82.83x - 400x^2+0.048=0$[/tex]

[tex]$ 400x^2- 82.83x-0.048=0$[/tex]

x = 0.20 m

Ver imagen AbsorbingMan