Answer:
Explanation:
From the information given:
The motional emf can be computed by using the formula:
[tex]E = L^{\to}*(V^\to*\beta^{\to})[/tex]
[tex]E = L^{\to}*((x+y+z)*\beta^{\to})[/tex]
[tex]E = 0.50*((18\hat i+24 \hat j +72 \hat k )*0.0800)[/tex]
[tex]E = 0.50*((18*0.800)\hat k +0j+(72*0.080) \hat -i ))[/tex]
[tex]E = 0.50*((18*0.800)[/tex]
E = 0.72 volts
According to the question, suppose the wire segment was parallel, there will no be any emf induced since the magnetic field is present along the y-axis.
As such, for any motional emf should be induced, the magnetic field, length, and velocity are required to be perpendicular to one another .
Then the motional emf will be:
[tex]E = 0.50 \hat j *((18*0.800)\hat k -(72*0.080) \hat i ))[/tex]
E = 0 (zero)