The energy levels of hydrogenlike one-electron ions of atomic number Z differ from those of hydrogen by a factor of Z^2. Predict the wavelength of the 2s--->1s transition in He+.

Respuesta :

Answer:

[tex]\mathbf{\lambda \simeq 3.039 \times 10^{-8} \ m}[/tex]

Explanation:

For a hydrogen-like atom, the spectral line wavelength can be computed by using the formula:

[tex]\bar v = Z^2 R_H \Big(\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}\Big)[/tex]

where:

emitted radiation of the wavenumber  [tex]\bar v[/tex] = ???

atomic no of helium Z = 2

Rydberg's constant [tex]R_H = 1.097*10^7 \ m^{-1}[/tex]

the initial energy of  the principal quantum [tex]n_1[/tex] = 2

the initial energy of  the principal quantum [tex]n_1[/tex] = 2

Now, the emitted radiation of the wavenumber can be computed as:

[tex]\bar v = (2)^2 (1.097*10^7 \ m^{-1} ) \Big(\dfrac{1}{1^2}-\dfrac{1}{2^2}\Big)[/tex]

[tex]\bar v = 3.291 \times 10^ 7/m[/tex]

Now, the wavelength for the transition can be computed by using the relation between the wavelength λ and the emitted radiation of the wavenumber  [tex]\bar v[/tex], which is:

[tex]\bar v = \dfrac{1}{\lambda}[/tex]

[tex]\lambda = \dfrac{1}{\bar v}[/tex]

[tex]\lambda = \dfrac{1}{3.291 \times 10^{7}}\times \dfrac{m}{1}[/tex]

[tex]\mathbf{\lambda =3.03859 \times 10^{-8} \ m}[/tex]

[tex]\mathbf{\lambda \simeq 3.039 \times 10^{-8} \ m}[/tex]