Answer:
a) [tex]F_p=882N[/tex]
b) [tex]P=4410W[/tex]
c) [tex]V_p'=24135[/tex] ,[tex]n=15.2\%[/tex]
Explanation:
From the question we are told that:
Mass [tex]M=1500kg[/tex]
Velocity [tex]v=4.9m/s[/tex]
Coefficient of Rolling Friction [tex]\mu=0.06[/tex]
a)
Generally the equation for The Propulsion Force is mathematically given by
[tex]F_p=\mu*mg[/tex]
[tex]F_p=0.06*1500*9.81[/tex]
[tex]F_p=882N[/tex]
b)
Therefore Power Required at
[tex]V_p=5.0m/s[/tex]
[tex]P=F_p*V_p[/tex]
[tex]P=882*5[/tex]
[tex]P=4410W[/tex]
c)
[tex]V_p' =15mpg[/tex]
[tex]V_p'=15*\frac{1609}[/tex]
[tex]V_p'=24135[/tex]
Generally the equation for Work-done is mathematically given by
[tex]W=F_p*V_p'[/tex]
[tex]W=882*15*1609[/tex]
[tex]W=2.13*10^7[/tex]
Therefore
Efficiency
[tex]n=\frac{W}{E}*100\%[/tex]
Since
Energy in one gallon of gas is
[tex]E=1.4*10^8J[/tex]
Therefore
[tex]n=\frac{2.1*10^7}{1.4*10^8}*100\%[/tex]
[tex]n=15.2\%[/tex]