A chemist fills a reaction vessel with 9.47 atm nitrogen monoxide (NO) gas, 2.61 atm chlorine (C12) gas, and 8.64 atm nitrosyl chloride (NOCI) gas at a temperature of 25.0°C. Under these conditions, calculate the reaction free energy AG for the following chemical reaction:
2NO(g) + Cl2(g) = 2NOCI (g)
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.

Respuesta :

Answer: The Gibbs free energy change of the reaction is 2.832 kJ.

Explanation:

The relationship between Gibbs free energy change and reaction quotient of the reaction is:

[tex]\Delta G^o=-RT\ln Q_p[/tex]

where,

[tex]\Delta G^o[/tex] = Gibbs free energy change

R =  Gas constant = 8.314 J/mol.K

T = temperature = [tex]25^oC=298K[/tex]

[tex]Q_p[/tex] = reaction quotient = [tex]\frac{p_{NOCl}^2}{(p_{NO}^2)\times (p_{Cl_2})}[/tex]

We are given:

[tex]p_{NOCl}=8.64atm\\p_{NO}=9.47atm\\p_{Cl_2}=2.61atm[/tex]

Putting values in above equation, we get:

[tex]\Delta G^o=-(8.314)\times 298K\times \ln (\frac{(8.64)^2}{(9.47)^2\times (2.61)})\\\\\Delta G^o=-8.314\times 298\times (-1.143)[/tex]

[tex]\Delta G^o=2831.86J=2.832kJ[/tex]            (Conversion factor: 1 kJ = 1000 J)

Hence, the Gibbs free energy change of the reaction is 2.832 kJ.