Answer: The Gibbs free energy change of the reaction is 2.832 kJ.
Explanation:
The relationship between Gibbs free energy change and reaction quotient of the reaction is:
[tex]\Delta G^o=-RT\ln Q_p[/tex]
where,
[tex]\Delta G^o[/tex] = Gibbs free energy change
R = Gas constant = 8.314 J/mol.K
T = temperature = [tex]25^oC=298K[/tex]
[tex]Q_p[/tex] = reaction quotient = [tex]\frac{p_{NOCl}^2}{(p_{NO}^2)\times (p_{Cl_2})}[/tex]
We are given:
[tex]p_{NOCl}=8.64atm\\p_{NO}=9.47atm\\p_{Cl_2}=2.61atm[/tex]
Putting values in above equation, we get:
[tex]\Delta G^o=-(8.314)\times 298K\times \ln (\frac{(8.64)^2}{(9.47)^2\times (2.61)})\\\\\Delta G^o=-8.314\times 298\times (-1.143)[/tex]
[tex]\Delta G^o=2831.86J=2.832kJ[/tex] (Conversion factor: 1 kJ = 1000 J)
Hence, the Gibbs free energy change of the reaction is 2.832 kJ.