Respuesta :

Given:

The inequalities are:

[tex]y>\dfrac{2}{3}x+3[/tex]

[tex]y\leq -\dfrac{1}{3}x+2[/tex]

To find:

The graph for the given system of inequities.

Solution:

We have,

[tex]y>\dfrac{2}{3}x+3[/tex]

[tex]y\leq -\dfrac{1}{3}x+2[/tex]

The related equations are:

[tex]y=\dfrac{2}{3}x+3[/tex]

[tex]y=-\dfrac{1}{3}x+2[/tex]

Table of values

x                       [tex]y=\dfrac{2}{3}x+3[/tex]                        [tex]y=-\dfrac{1}{3}x+2[/tex]

0                             3                                           2

3                             5                                           1

Plot the points (0,3) and (3,5) and connect them by a straight line to get the boundary line [tex]y=\dfrac{2}{3}x+3[/tex].

Plot the points (0,2) and (3,1) and connect them by a straight line to get the boundary line [tex]y=-\dfrac{1}{3}x+2[/tex].

In [tex]y>\dfrac{2}{3}x+3[/tex], the sign of inequality is ">" it means the boundary line is a dashed line and shaded area lies above the boundary line.

[tex]y\leq -\dfrac{1}{3}x+2[/tex], the sign of inequality is "[tex]\leq [/tex]" it means the boundary line is a solid line and shaded area lies below the boundary line.

Therefore, the required graph is shown below.

Ver imagen erinna