Respuesta :

Step-by-step explanation:

If a fraction [tex]f(x)[/tex] is defined as

[tex]f(x) = \dfrac{g(x)}{h(x)}[/tex]

then the derivative [tex]f'(x)[/tex] is given by

[tex]f'(x) = \dfrac{g'(x)h(x) - g(x)h'(x)}{h^2(x)}[/tex]

So the derivative can be calculated as follows:

[tex]f'(x) = \dfrac{d}{dx}\left(\dfrac{4x^3 - 7x + 8}{x} \right)[/tex]

[tex]=\dfrac{(12x^2 - 7)x - (4x^3 - 7x + 8)}{x^2}[/tex]

[tex]= \dfrac{12x^3 - 7x - 4x^3 + 7x - 8}{x^2}[/tex]

[tex]= \dfrac{8x^3 - 8}{x^2}[/tex]