Respuesta :
Answer:
(a): The conditional pmf of Y when X = 1
[tex]p_{Y|X}(0|1) = 0.2353[/tex]
[tex]p_{Y|X}(1|1) = 0.5882[/tex]
[tex]p_{Y|X}(2|1) = 0.1765[/tex]
(b): The conditional pmf of Y when X = 2
[tex]p_{Y|X}(0|2) = 0.0962[/tex]
[tex]p_{Y|X}(1|2) = 0.2692[/tex]
[tex]p_{Y|X}(2|2) = 0.6346[/tex]
(c): From (b) calculate P(Y<=1 | X =2)
[tex]P(Y\le1 | X =2) = 0.3654[/tex]
(d): The conditional pmf of X when Y = 2
[tex]p_{X|Y}(0|2) = 0.025[/tex]
[tex]p_{X|Y}(1|2) = 0.150[/tex]
[tex]p_{X|Y}(2|2) = 0.825[/tex]
Step-by-step explanation:
Given
The above table
Solving (a): The conditional pmf of Y when X = 1
This implies that we calculate
[tex]p_{Y|X}(0|1), p_{Y|X}(1|1), p_{Y|X}(2|1)[/tex]
So, we have:
[tex]p_{Y|X}(0|1) = \frac{p(y = 0\ n\ x = 1)}{p(x = 1)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{Y|X}(0|1) = \frac{0.08}{0.08+0.20+0.06}[/tex]
[tex]p_{Y|X}(0|1) = \frac{0.08}{0.34}[/tex]
[tex]p_{Y|X}(0|1) = 0.2353[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{Y|X}(1|1) = \frac{0.20}{0.34}[/tex]
[tex]p_{Y|X}(1|1) = 0.5882[/tex]
[tex]p_{Y|X}(2|1) = \frac{0.06}{0.34}[/tex]
[tex]p_{Y|X}(2|1) = 0.1765[/tex]
Solving (b): The conditional pmf of Y when X = 2
This implies that we calculate
[tex]p_{Y|X}(0|2), p_{Y|X}(1|2), p_{Y|X}(2|2)[/tex]
So, we have:
[tex]p_{Y|X}(0|2) = \frac{p(y = 0\ n\ x = 2)}{p(x = 2)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{Y|X}(0|2) = \frac{0.05}{0.05+0.14+0.33}[/tex]
[tex]p_{Y|X}(0|2) = \frac{0.05}{0.52}[/tex]
[tex]p_{Y|X}(0|2) = 0.0962[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{Y|X}(1|2) = \frac{0.14}{0.52}[/tex]
[tex]p_{Y|X}(1|2) = 0.2692[/tex]
[tex]p_{Y|X}(2|2) = \frac{0.33}{0.52}[/tex]
[tex]p_{Y|X}(2|2) = 0.6346[/tex]
Solving (c): From (b) calculate P(Y<=1 | X =2)
To do this, where Y = 0 or 1
So, we have:
[tex]P(Y\le1 | X =2) = P_{Y|X}(0|2) + P_{Y|X}(1|2)[/tex]
[tex]P(Y\le1 | X =2) = 0.0962 + 0.2692[/tex]
[tex]P(Y\le1 | X =2) = 0.3654[/tex]
Solving (d): The conditional pmf of X when Y = 2
This implies that we calculate
[tex]p_{X|Y}(0|2), p_{X|Y}(1|2), p_{X|Y}(2|2)[/tex]
So, we have:
[tex]p_{X|Y}(0|2) = \frac{p(x = 0\ n\ y = 2)}{p(y = 2)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{X|Y}(0|2) = \frac{0.01}{0.01+0.06+0.33}[/tex]
[tex]p_{X|Y}(0|2) = \frac{0.01}{0.40}[/tex]
[tex]p_{X|Y}(0|2) = 0.025[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{X|Y}(1|2) = \frac{0.06}{0.40}[/tex]
[tex]p_{X|Y}(1|2) = 0.150[/tex]
[tex]p_{X|Y}(2|2) = \frac{0.33}{0.40}[/tex]
[tex]p_{X|Y}(2|2) = 0.825[/tex]