Respuesta :

leena

Hi there!

We can begin by solving the left side:

tan²Θ - sin²Θ =

Rewrite tan:

[tex]\frac{sin^2\theta}{cos^2\theta} - sin^2\theta =[/tex]

Multiply sin²Θ by cos²Θ to get a common denominator:

[tex]\frac{sin^2\theta}{cos^2\theta} - \frac{sin^2\theta * cos^2\theta}{cos^2\theta}=[/tex]

Subtract:

[tex]\frac{sin^2\theta- sin^2\theta * cos^2\theta}{cos^2\theta} =[/tex]

Factor out sin²Ф from the numerator:

[tex]\frac{sin^2\theta(1 - cos^2\theta)}{cos^2\theta} =[/tex]

Rewrite 1 - cos²Ф as sin²Ф (Pythagorean identity)

[tex]\frac{sin^2\theta(sin^2\theta)}{cos^2\theta} =[/tex]

Simplify:

[tex]\frac{sin^4\theta}{cos^2\theta} =[/tex]

Split into sin and tan:

[tex]sin^2\theta * \frac{sin^2\theta}{cos^2\theta} =[/tex]

Rewrite:

[tex]sin^2\theta * tan^2\theta[/tex]