solve the problems. write the complete proof in your paper homework and for online (only) complete the probing statement (if any) that is a part of your proof or related to it

solve the problems write the complete proof in your paper homework and for online only complete the probing statement if any that is a part of your proof or rel class=

Respuesta :

Answer:

[tex]m \angle A = m \angle C[/tex] by reason [tex]\overline{AB} \cong \overline{BC}[/tex] and [tex]m \angle B = m \angle M = m \angle P[/tex].

[tex]\triangle AMO \cong \triangle CPO[/tex] SAS Theorem

Step-by-step explanation:

We proceed to demonstrate the statement by Geometric means:

1) [tex]\overline{AB} \cong \overline{BC}[/tex], [tex]\overline {AM} \cong \overline {PC}[/tex], [tex]m\angle AMO = m\angle CPO[/tex] Given.

2) [tex]\frac{AM}{AB} = \frac{PC}{BC}[/tex] Proportionality.

3) [tex]\frac{AM}{AM + MB} = \frac{PC}{BP + PC}[/tex] Definition of line segments.

4) [tex]\frac{1}{1+\frac{MB}{AM} } = \frac{1}{\frac{BP}{PC}+1}[/tex] Algebra.

5) [tex]\frac{BP}{PC} + 1 = 1 +\frac{MB}{AM}[/tex] Algebra.

6) [tex]\frac{BP}{PC} = \frac{MB}{AM}[/tex] Algebra.

7) [tex]BP = BM[/tex] By 1)

8) [tex]m \angle B = m \angle M = m \angle P[/tex] By 1), 7)

9) [tex]\triangle AMO \sim \triangle ABC[/tex], [tex]\triangle CPO \sim \triangle ABC[/tex] By 1), 7), 8). Defintion of simmilarity.

10) [tex]\frac{AM}{MO} = \frac{AB}{BC}[/tex], [tex]\frac{PO}{PC} = \frac{AB}{BC}[/tex] Definition of proportionality.

11) [tex]\frac{AM}{MO} = \frac{PO}{PC}[/tex] Algebra.

12) [tex]AM^{2} = PO\cdot MO[/tex] Algebra.

13) [tex]PO = MO[/tex] By 12) and Algebra.

14) [tex]\overline{PO} \cong \overline{MO}[/tex] By 13).

15) [tex]\triangle AMO \cong \triangle CPO[/tex] SAS Theorem/Result.