Respuesta :

Answer:

7. [tex]x^{11}[/tex]   8. [tex]y^{2}\\[/tex]  9. [tex]p^{12}[/tex]  10.[tex]a^{3} b^{2}[/tex]  11.[tex]g^{16}[/tex]  12.[tex]r^{9} h^{3}[/tex]  13.[tex]m^{15} p^{6}[/tex]  14.[tex]k^{6} y[/tex]  15.[tex]x^6 z^4[/tex]

Step-by-step explanation:

7. [tex]x^3[/tex] × [tex]x^8[/tex] = [tex]x^{11}[/tex] when multiplying with exponents you add

8. [tex]\frac{y^{6} }{y^{4} }[/tex] = [tex]y^{2}[/tex] when dividing with exponents you subtract

9. [tex](p^{3})^4[/tex] = [tex]p^{12}\\[/tex] when it's power to power, you multiply

10. [tex]\frac{a^{9} b^{4}}{a^{6} b^{2}}[/tex] = [tex]a^{3} b^{2}[/tex]  (subtract exponents)

11. [tex](g^{8})^2[/tex] = [tex]g^{16}[/tex]  (multiply exponents)

12. [tex]r^{4} h^{2} r^{5} h[/tex] = [tex]r^{9} h^{3}[/tex]  (add exponents [tex]r^4 + r^5\\[/tex] and [tex]h^2 +h^1\\[/tex] )

13. [tex](m^{5} p^{2})^3[/tex] = [tex]m^{15} p^{6}[/tex] (multiply exponents)

14. [tex]\frac{k^{7} y^{4}}{y^{3}k}[/tex] =  [tex]k^{6} y[/tex] (subtract exponents [tex]k^7-k^1[/tex] and [tex]y^4-y^3\\[/tex] )

15. [tex]x^3 z^2 x^3 z^2[/tex] = [tex]x^6 z^4[/tex] (add exponents same as #12)