Respuesta :

Answer:

Step-by-step explanation:

Given that:

[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]

[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]

[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]

since  [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]

Then, it implies that:

[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]

[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]

[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]

[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]