Respuesta :

Answer:

Consider the following equilibrium:

2H2(g)+S2(g)⇌2H2S(g)Kc=1.08×107 at 700 ∘C.

What is Kp?

Explanation:

Given,

[tex]Kc=1.08 * 10^7[/tex]

The relation between Kp and Kc is:

[tex]Kp=Kc * (RT)^d^e^l^t^a^(^n^)[/tex]

Where delta n represents the change in the number of moles.

For the given equation,

The Delta n = Number of moles of products - number of moles of reactants

(2-(2+1))

=-1.

Hence,

Kp=Kc/RT.

Thus,

[tex]Kp=1.08 * 10^7 / 8.314 J.K6-1.mol^-^1 x 973 K\\Kp=1335.06[/tex]

The answer is Kp=1335.06

The value of [tex]K_p[/tex] is [tex]1.35\times 10^5[/tex].

Explanation:

The relation between [tex]K_p \& K_c[/tex] is given by:

[tex]K_p=K_c(RT)^{\Delta n_g}[/tex]

Where:

[tex]K_c[/tex] = The equilibrium constant of reaction in terms of concentration

[tex]K_p[/tex] = The equilibrium constant of reaction in terms of partial pressure

R= The universal gas constant

T = The temperature of the equilibrium

[tex]n_g[/tex]= Change in gaseus moles

Given:

An equilibrium reaction, 700°C:

[tex]2H_2(g)+S_2(g)\rightleftharpoons 2H_2S(g),K_c=1.08\times 10^7[/tex]

To find:

The equilibrium constant in terms of partial pressure, [tex]K_p[/tex].

Solution:

The equilibrium constant of reaction in terms of concentration= [tex]K_c[/tex]

[tex]K_c=1.08\times 10^7[/tex]

The equilibrium constant of reaction in terms of partial pressure =[tex]K_p=?[/tex]

The gaseous moles of reactant side = [tex]n_r= 3[/tex]

The gaseous moles of product side = [tex]n_p= 2[/tex]

The temperature at which equilibrium is given = T

[tex]T = 700^oC+273.15 K=973.15K[/tex]

The change in gaseous mole  = [tex]n_g=n_p-n_r=2-3 = -1[/tex]

[tex]K_p=1.08\times 10^7\times (0.0821 atm L/mol K\times 973.15 K)^{-1}\\K_p=1.35\times 10^5[/tex]

The value of [tex]K_p[/tex] is [tex]1.35\times 10^5[/tex].

Learn more equilibrium constants here:

brainly.com/question/9173805?referrer=searchResults

brainly.com/question/5877801?referrer=searchResults