contestada

Find the third term of a geometric progression if the sum of the first three terms is equal to 12, and the sum of the first six terms is equal to (−84).

Respuesta :

Given:

The sum of the first three terms = 12

The sum of the first six terms = (−84).

To find:

The third term of a geometric progression.

Solution:

The sum of first n term of a geometric progression is:

[tex]S_n=\dfrac{a(r^n-1)}{r-1}[/tex]

Where, a is the first term and r is the common ratio.

The sum of the first three terms is equal to 12, and the sum of the first six terms is equal to (−84).

[tex]\dfrac{a(r^3-1)}{r-1}=12[/tex]               ...(i)

[tex]\dfrac{a(r^6-1)}{r-1}=-84[/tex]               ...(ii)

Divide (ii) by (i), we get

[tex]\dfrac{r^6-1}{r^3-1}=\dfrac{-84}{12}[/tex]

[tex]\dfrac{(r^3-1)(r^3+1)}{r^3-1}=-7[/tex]

[tex]r^3+1=-7[/tex]

[tex]r^3=-7-1[/tex]

[tex]r^3=-8[/tex]

Taking cube root on both sides, we get

[tex]r=-2[/tex]

Putting [tex]r=-2[/tex] in (i), we get

[tex]\dfrac{a((-2)^3-1)}{(-2)-1}=12[/tex]

[tex]\dfrac{a(-8-1)}{-3}=12[/tex]

[tex]\dfrac{-9a}{-3}=12[/tex]

[tex]3a=12[/tex]

Divide both sides by 3.

[tex]a=4[/tex]

The nth term of a geometric progression is:

[tex]a_n=ar^{n-1}[/tex]

Where, a is the first term and r is the common ratio.

Putting [tex]n=3,a=4,r=-2[/tex] in the above formula, we get

[tex]a_3=4(-2)^{3-1}[/tex]

[tex]a_3=4(-2)^{2}[/tex]

[tex]a_3=4(4)[/tex]

[tex]a_3=16[/tex]

Therefore, the third term of the geometric progression is 16.